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a b s t r a c t

The proliferation of video data makes it imperative to develop automatic approaches that semantically an-

alyze and summarize the ever-growing massive visual data. As opposed to existing approaches built on still

images, we propose an algorithm that detects recurring primary object and learns cohort object proposals

over space-time in video. Our core contribution is a graph transduction process that exploits both appear-

ance cues learned from rudimentary detections of object-like regions, and the intrinsic structures within

video data. By exploiting the fact that rudimentary detections of recurring objects in video, despite appear-

ance variation and sporadity of detection, collectively describe the primary object, we are able to learn a

holistic model given a small set of object-like regions. This prior knowledge of the recurring primary object

can be propagated to the rest of the video to generate a diverse set of object proposals in all frames, incorpo-

rating both spatial and temporal cues. This set of rich descriptions underpins a robust object segmentation

method against the changes in appearance, shape and occlusion in natural videos. We present extensive ex-

periments on challenging datasets that demonstrate the superior performance of our approach compared

with the state-of-the-art methods.

© 2016 Elsevier Inc. All rights reserved.
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. Introduction

Segmenting object from video remains an open challenge with re-

ent advances relying upon prior knowledge supplied via interactive

nitialization or correction [1–6]. Yet fully automatic video object dis-

overy and segmentation [7–12] remains useful in scenarios where

he human in the loop is impractical, such as video summarization

r ingest pre-processing for video indexing or recognition. This is a

ery challenging task due to the lack of prior knowledge about ob-

ect appearance, shape or position. Furthermore, variance in illumi-

ation and occlusion relationships introduce ambiguities that in turn

nduce instability in boundaries and the potential for localized under-

r over-segmentation.

This paper proposes a novel automatic primary video object dis-

overy and segmentation algorithm in which the segmentation of

ach frame is driven by set of rich object models learned from spatio-

emporally dense and coherent object proposals. Following [9–14], the

rimary video object refers to the object that presents saliently, in

erms of either appearance or motion, in most of the frames. The core

ovel contribution is our graph transduction approach to the efficient
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earning of the dense video object proposals which enables the detec-

ion and segmentation of objects in complex dynamic scenes without

uffering from appearance variation or object occlusion over time. In

ontrast to previous techniques, our algorithm learns and extracts ob-

ect proposals from scratch to account for the evolution of object’s ap-

earance, shape and location with time, as opposed to selecting from

xisting per-frame detections of object-like regions [9–13].

Our strategy is to create feature-based rudimentary detections of

egions for the primary object by learning from weakly labelled ex-

mples of object-like regions. These detections serve as informative

ndicators of the appearance and location of the object. We propagate

his learned prior knowledge on an undirected space-time graph con-

isting of regions, solving the transduction learning efficiently with

fast convergence technique [15]. Inference at the region level fur-

her makes our dense video object proposal extraction approach a

ractical solution for automatic object segmentation on natural video

equences.

We describe our proposed video object proposal algorithm in

ection 3, presenting the utilization of video object proposals for ro-

ust video object segmentation in Section 4. In Section 6, we evaluate

ur video object proposal and segmentation approach on benchmark

ataset and additional dataset comprising challenging video clips ex-

ibiting clutter, occlusion and agile motion, comparing against state-

f-the-art semi-automatic and automatic algorithms.

http://dx.doi.org/10.1016/j.cviu.2015.11.006
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2. Related work

Generic object detection has been intensively studied in context of

still images recently [16–21]. Alexe et al. [16] introduced the object-

ness measure which computes the probability that a window con-

tains any object, using a Bayesian classifier based on multiple cues.

Carreira et al. [17] (CPMC) proposed to use several graphcuts run-

ning using random positive and negative seeds. Each generated fore-

ground mask serves as an object proposal, and the proposals are

ranked according to a learned scoring function. Similarly to CPMC,

Endres and Hoiem [18] proposed to generate multiple foreground

segmentations and use these as object proposals using binary CRF

segmentation with random seeds. [19] performs an ad-hoc hierarchi-

cal bottom-up agglomeration of groups of regions and a fixed number

of proposals are generated at each step of the agglomeration. Ma-

nen et al. [20] proposed an approach based on randomly growing

groups of regions, which allows to generate any desirable number

of object proposals. Cheng et al. [21] introduced a simple and fast

objectness measure to compute the objectness of each image win-

dow at various scale and aspect ratio. The bounding box based ob-

jectness measure methods [16,21] share the similar limitations that

a bounding box might not localize the object instances as accurately

as a segmentation region. Generating object proposals incorporating

temporal information has been receiving more attentions recently

[22,23]. Sharir and Tuytelaars [22] proposed to extract object propos-

als in each frame separately which are linked across frames into ob-

ject hypotheses. This approach suffers from the mis-segmentations

of object proposals in each independent frame. Oneata et al. [23] pro-

posed a supervoxel method for spatio-temporal detection. However,

supervoxel based approaches usually become computationally infea-

sible for pixel counts in even moderate size videos, and often under-

segment small or fast moving objects that form disconnected space-

time volumes.

Our method follows the segmentation based approach to gener-

ating video object proposals which provides a set of rich descrip-

tions underpinning robust segmentation and many other applica-

tions against large variations of appearance, shape and occlusion in

natural videos. As apposed to those image based generic object de-

tection algorithms which typically generate an excessive amount of

proposals ( > 104), our approach generates cohort object proposals

over space-time to capture the essential parts of tentative primary

object exploring cues beyond the single still image.

Video object segmentation methods requiring user to provide an

initial annotation of the first frame have been proposed, which ei-

ther propagate the annotation to drive the segmentation in succes-

sive frames [1–6,24] or perform spatio-temporal grouping [25,26].

The former group of methods heavily rely on motion estimates and

may fail in segmenting videos with complex motions or varying ob-

ject appearance. Although stability is achieved in the latter methods,

they usually become computationally infeasible for pixel counts in

even moderate size videos, and often fail in dealing with fast moving

objects.

Automatic video object segmentation methods have also been

proposed as a consequence of the prohibitive cost of user interven-

tion in processing large amounts of video data in most computer

vision applications. Methods like [12,27–31] take a bottom-up ap-

proach based on spatio-temporal appearance and motion constraints.

Motion segmentation methods [32–38] cluster pixels or regions in

video employing long-term motion trajectories analysis, which re-

quire the motion of the primary object to be neither too similar with

the background nor too fast. Occlusion boundary approach [37] has

been proposed to detecting occlusion boundaries and assigning fig-

ure/ground labels to both sides of those boundaries. Layered models

have been studied in [32,35,36,39,40]. Methods which generate over-

segmentations for later processing analog to still-image regions [41]

have also been proposed [42,43], by applying spatio-temporal clus-
ering based on low level features. Papazoglou and Ferrari [12] deter-

ine an initial set of foreground pixels based purely on motion and

efine the FG/BG labels using Graph Cut. However, without any top-

own explicit notion of object, all of these automatic methods pro-

uce segmentations without corresponding to any particular object

ith semantic meaning.

Several recent methods [9–11,13,14] are proposed based on ex-

loring recurring object-like regions from still images by measur-

ng generic object appearance [18]. Lee et al. [9] proposed to extract

key-segments’ of the primary object by performing clustering in a

ool of object proposals from each frame of the video. The weakness

f this approach is that the object proposal pool combines regions

cross all frames and discards the spatial and temporal information

f each region. Ma and Latecki [10] proposed to leverage the tempo-

al information by utilizing binary appearance relation between re-

ions in different frames and model the object region selection as

constrained Maximum Weight Cliques problem. Zhang et al. [11]

mproved this approach by introducing optical flow to track the evo-

ution of object shape and appearance and solving the primary ob-

ect proposal selection problem as the longest path problem for Di-

ected Acyclic Graph (DAG). There are mainly two limitations with

hese later two approaches [10,11]. First, both approaches propose

o select or merge per-frame extracted object-like regions based on

he objectness score which is computed locally in each frame, regard-

ess of the prior knowledge of the corresponding object learned from

ther frames; their performance heavily relies on the quality of the

nitial rudimentary detection of object-like regions which is highly

nreliable in practice. The initial object proposals generated using

18] normally contain a large amount of erroneous regions. Second,

oth approaches assume all object-like regions within each frame are

ndependent and do not explicitly consider spatial affinity. This sub-

tantially limits the size of the object proposal especially when the

rimary object is comprised of multiple regions with distinct appear-

nces. An additional limitation of [11] is that it employs optical flow

arped region overlap to merge object-like regions into a new re-

ion which may introduce further spurious proposals due to inher-

nt motion estimate error. Li et al. [13] proposed to track a pool of

gure-ground segments in each frame and incrementally to learn a

ong-term object appearance model. However the incrementally built

ppearance model heavily relies on greedy matching and also suffers

rom the cumulative motion estimation error. Yang et al. [14] pro-

osed a method to fuse appearance and motion saliency maps for

iscovering primary video object. All the above methods do not build

n explicit holistic appearance model but relies on local heuristics

nd motion for selecting and merging the object proposals or saliency

aps.

To address the limitations of the above approaches [9–11,13,14],

e propose to learn a holistic appearance model from the rudimen-

ary detection of object-like regions across the whole video to drive

he generation of dense object proposals. We propagate the prior

nowledge from rudimentary detections on an undirected space-

ime graph consisting of regions by performing transduction learn-

ng, with respect to both low level cues collectively revealed by the

ppearance model and the intrinsic structure within video data. The

ransduction learning is guided by the initially detected evidence by

ollectively learning the initial sparse object-like regions, rather than

irectly using the local static ‘objectness’ score. Spatio-temporally co-

erent and dense object proposals are generated to facilitate robust

bject segmentation in challenging natural videos.

Our segmentation is driven by Markov Random Field (MRF) ap-

roach. A variety of MRF models as well as inference and learning

ethods have been developed for addressing numerous computer

ision problems during the past decade. MRF models can be catego-

ized into pairwise models and higher-order models. Various works

ave investigated the modeling of vision problems using pairwise

RFs (e.g., [36,44–48]) and the efficient inference in pairwise MRFs
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e.g., [49–53]). Higher-order MRFs has recently increased largely the

bility of graph-based modeling and better characterized the statis-

ics between random variables [54–57]. For more complete surveys

f Markov Random Field, the reader is refereed to [58,59].

To summarize our contributions: (1) we introduce a graph trans-

uction learning approach to efficiently detect recurring objects and

earn cohort object proposals over space-time in video, by exploring

he holistic patterns of primary object collectively revealed by a small

et of object-like regions and the intrinsic structure within video data

2) we utilize this set of object proposals which provide sufficient and

iverse appearance, shape, and location prior information to drive

he object segmentation problem while preserving spatio-temporal

oherence.

. Video object proposals

We formulate the problem of generating a diverse set of dense

ideo object proposals as a graph transduction learning problem,

iven the prior knowledge from the initial detection and the intrinsic

tructure within data. The purpose of graph transduction is to propa-

ate the sparse local evidence over space-time in video to coherently

ocate strong valid indicators of primary object.

.1. Graph transduction learning of object proposals

Let X = {x1, . . . , xn} ⊂ R
m denote a given dataset, and L be a con-

inuous label set. We assume that a subset of the dataset (X̄ ⊆ X )

ave been noisily labeled by values in L, and the remaining data

oints X\X̄ might be unlabeled. Our goal of transduction learning

s to predict the label of both labeled and unlabeled points given the

nitial noisy label.

.1.1. Space-time graph of regions

To perform transduction learning, we define a weighted space-

ime graph Gs = (V, E ) spanning X , i.e. the whole video with each

ode corresponding to a region, and each edge connecting two re-

ions based on spatial and temporal adjacencies. Temporal adjacency

s coarsely determined based on motion estimates. Each region rk
i

in

rame i is warped by the forward optical flow [60] to frame i + 1 and

he overlap ratio between the warped region rk
i

and the overlapped

egions r
j
i+1

in frame i + 1 are computed as

overlap(k, j) = |r̃k
i

∩ r j
i+1

|
|r̃k

i
| ,

here r̃k
i

is the warped region of rk
i

by optical flow to frame i + 1, and

r| is the cardinality of region r. If Soverlap(k, j) is greater than 0.5 for

pair of regions, i.e. rk
i

and r
j
i+1

, in two successive frames, they are

eemed temporally adjacent. Note that accurate motion estimation

s neither assumed nor required to construct this graph.

We compute the affinity matrix W of the graph using the feature

istogram representation hri
of each region ri as

i j = exp

(
−χ2(hri

, hrj
)

2β

)
,

here β is the average χ2 distance between all adjacent re-

ions. Since sparsity is important to remove label noise and semi-

upervised learning algorithms are more robust on sparse graphs

61], we set all Wij are set to zero if ri and rj are not adjacent.

.1.2. Graph transduction learning

Graph transduction learning propagates label information from

abeled nodes to unlabeled nodes. Let the node degree matrix D =
iag([d1, . . . , dN]) be defined as Di = ∑N

j=1 Wi j, where N = |V|. We
ollow a similar formulation with [15] to minimize an energy func-

ion E(F) with respect to all region labels F:

(F ) =
N∑

i, j=1

Wi j| Fi√
Di

− Fj√
Dj

|2 + μ
N∑

i=1

|Fi − Yi|2, (1)

here μ > 0 is the regularization parameter, and Y are the desirable

abels of nodes which are normally imposed by prior knowledge. The

rst term in (1) is the smoothness constraint, which encourages the

oherence of labelling among adjacent nodes, whilst the second term

s the fitting constraint which enforces the labelling to be similar with

he initial label assignment.

The optimization problem in (1) is solved by an iteration algo-

ithm in [15]. Alternatively we solve it as a linear system of equations.

ifferentiating E(F) with respect to F we have

E(F )|F=F∗ = F ∗ − SF ∗ + μ(F ∗ − Y ) = 0 (2)

here S = D−1/2WD−1/2. It can be transformed as

∗ − 1

1 + μ
SF ∗ − μ

1 + μ
Y = 0 (3)

enoting γ = μ
1+μ , we have

(I − (1 − γ )S)F∗ = γY. (4)

n optimal solution for F can be solved using the Conjugate Gradient

ethod with very fast convergence.

We use the predictions from the holistic object model (described

n Section 3.2) to assign the values of Y. The diffusion process can

e performed for positive and negative labels separately, with initial

abels Y in (1) substituted as Y+ and Y− respectively:

+ =
{

Y if Y > 0
0 otherwise

(5)

nd

− =
{

−Y if Y < 0
0 otherwise.

(6)

Combining the diffusion processes of both the object-like regions

nd background can produce more efficient and coherent labelling,

aking advantage of their complementary properties. We perform the

ptimization for two diffusion processes simultaneously as follows:

∗ = γ (I − (1 − γ )S)−1(Y+ − Y−). (7)

This enables a faster and stable optimization avoiding separate op-

imizations. Finally, the regions which are assigned with label F > 0

rom each frame are grouped. Specifically, we use the final label F to

ndicate the level of objectness of each region.

The final proposals are generated by grouping the spatially adja-

ent regions (F > 0), and assigned by an objectness value by averag-

ng the constituent region-wise objectness F weighted by area. The

rouped regions with the highest objectness per frame are added to

he set of object proposals P . Exemplar video object proposals are

hown in Fig. 1.

.2. Learning a holistic appearance model

We describe the process of learning a holistic appearance model

f the primary object for graph transduction learning in this section

Fig. 2). The process begins by discovering an initial set of object-like

egions from video sequence. Throughout the discovery process, we

aintain two disjoint sets of image regions: H and U , which repre-

ent the discovered object-like regions and those remain in the gen-

ral unlabeled pool, respectively. H is initially empty whilst U is set

o be all the regions.

Since we assume no prior knowledge on the size, shape, appear-

nce or location of the primary object, our algorithm operates by pro-

ucing a diverse set of object proposals in each frames using [18]
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Fig. 1. Exemplar video object proposals from CHEETAH sequence. Colors of contour indicate different proposals. The transparency of each region indicates the objectness (F) from

graph transduction learning. The objectness of each final object proposal is computed by averaging the constituent region-wise objectness F weighted by area.

Fig. 2. The process of learning a holistic appearance model of the primary object.

Fig. 3. Computing the saliency map: (a) top-scoring detection windows using [16]; (b) saliency map by accumulating 1000 windows.
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which is a category independent method to identify object-like re-

gions in still image.

To find the object-like regions among the proposals, we compute

a score �(r) for each region r as

�(r) = Ob j(r) + Ctx(r) (8)

where Obj(r) is the objectness cue and Ctx(r) is the context cue.

3.2.1. Objectness cue

The static intra-frame objectness score Obj(r) quantifies how likely

it is for an image region or window to contain an object of any class.

Note, this objectness score does not consider context cues, e.g. mo-
ion, object categories and temporal coherence etc., and reflects only

he generic object-like properties of the region (saliency, apparent

eparation from background, etc.). Obj(r) is defined as:

b j(r) = A(r) + S(r)

here A(r) indicates region level appearance score computed using

18] and S(r) represents the saliency level of region r which is defined

s:

(r) = θr

∑
x∈r

S(x).

denotes a real valued saliency map the same size as the input im-

ge, and θ r is an adaptive weight indicating the ‘purity’ of salience
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Fig. 4. Positive predictions of each region and the brightness indicates probability of being an object: (a) source image; (b) independent SVM predictions; (c) predictions from

graph transduction capturing the coherent intrinsic structure within visual data, using SVM predictions as input; (d) per-pixel object probabilities from GMM color model trained

using object proposals.
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nside region r, which is computed using the variance of saliency of

ll constituent pixels of r:

r = exp

(
− 1

|r|
∑
x∈r

(S(x) − 1

|r|
∑
x∈r

S(x))2

)
.

ower ‘purity’ or higher variance of salience results in lower region

evel salience.

To compute the saliency map, we adopt [16] which combines sev-

ral image cues measuring distinctive characteristics of objects. For

ach image, we sample 1000 windows likely to contain an object from

his measure and set the saliency map S to be the pixel-wise mean of

bjectness scores of all detected windows.

.2.2. Context cue

We consider motion as the major context cue to resolve the visual

mbiguities present in the objectness cue at this stage. Context cue

tx(r) reflects the disparity of motions between primary object and

ackground. We compute optical flow [60] histograms for region r

nd r̄ which is formed by merging all the closest surrounding regions

f r. We find that using surrounding regions is more informative than

sing pixels in a loosely fit bounding box around r. We compute Ctx(r)

s

tx(r) = 1 − exp(−χ2
f low(r, r̄)),

here χ2
f low

(r, r̄) is the χ2 distance between L1-normalized optical

ow histograms for regions r and r̄.

.2.3. Discovery of object-like regions

A candidate pool C can be formed by taking the top K highest-

coring regions from each frame, and then identify groups of object-

ike regions that may represent a foreground object by performing

pectral clustering [62] in C. All clusters are ranked based on the aver-

ge score � (Eq. (8)) of its comprising regions. The clusters among the

ighest ranks correspond to the most object-like regions but there

ay also be noisy regions, which are added to H.

Each object-like region may correspond to different part of the

rimary object from particular frames, whereas they collectively de-

cribe the primary object. We could devise a discriminative model to

earn the appearance of those most likely object regions. The initial

et of object-like regions H form the set of all instances with a pos-

tive label (denoted as P), while negative regions (N ) are randomly

ampled outside the bounding box of the positive example. We use

his labeled training set to learn linear SVM classifier for two cate-

ories. The classifier provides a confidence of class membership tak-

ng the features of a region which combines texture and color fea-

ures, as input. This classifier is then applied to all the unlabeled re-

ions across the whole video. After this classification process, each

nlabelled region i is assigned with a weight Yi, i.e. the SVM margin.

ll weights are normalized between −1 and 1, by the sum of positive

nd negative margins.

The holistic appearance model provides an informative yet in-

ependent and incoherent prediction on each of the unlabelled re-

ions regardless the inherent structure revealed by both labeled and
nlabeled regions. To generate robust dense video object propos-

ls, we adopt our proposed graph transduction learning approach

Section 3.1), exploiting both the intrinsic structure within data

nd the initial local evidence from the holistic appearance model.

ig. 4(a–c) shows the positive predictions of each region, from SVM

redictions and graph transduction learning respectively. The predic-

ion from SVM exhibits unappealing incoherence, nonetheless, using

t as initial input, graph transduction gives smooth predictions ex-

loiting the inherent structure of data.

. Video object segmentation

We formulate video object segmentation as a pixel-labelling prob-

em of assigning each pixel with a binary value which represents

ackground or foreground (object) respectively. We define a space-

ime graph by connecting frames temporally with optical flow dis-

lacement. In contrast to the previous space-time graph during trans-

uction learning, each of the nodes in this graph is a pixel as opposed

o a region, and edges are set to be the 4 spatial neighbors within

he same frame and the 2 temporal neighbors in adjacent frames. We

efine the energy function that minimizes to achieve the optimal la-

eling:

(x) =
∑
i∈V

ψi(xi) + λ
∑

i∈V, j∈Ni

ψi, j(xi, x j)

here Ni is the set of pixels adjacent to pixel i in the graph and λ is a

arameter.

The pairwise term ψ i, j(xi, xj) penalizes different labels assigned to

djacent pixels:

i, j(xi, x j) = [xi �= x j]exp(−d(xi, x j))

here [·] denotes the indicator function. The function d(xi, xj) com-

utes the color and edge distance between neighboring pixels:

(xi, x j) = β(1 + |SE(xi) − SE(x j)|) · ||ci − c j||2

here SE(xi) (SE(xi) ∈ [0, 1]) returns the edge probability provided by

he Structured Edge (SE) detector [63], ||ci − c j||2 is the squared Eu-

lidean distance between two adjacent pixels in CIE Lab colorspace,

nd β = (2 < ||ci − c j||2 >)−1 with <·> denoting the expectation.

The unary term ψ i(xi) defines the cost of assigning label xi ∈ {0, 1}

o pixel i, which is defined based on the per-pixel probability map by

ombining color distribution and region objectness:

i(xi) = −log(w · Uc
i (xi) + (1 − w) · Uo

i (xi))

here Uc
i
(·) is the color likelihood and Uo

i
(·) is the objectness cue.

he definitions of these two terms are explained in detail next.

.1. Color likelihood

To model the appearance of the object and background, we esti-

ate two Gaussian Mixture Models (GMM) in CIE Lab colorspace. Pix-

ls belonging to the set of object proposals are used to train the GMM

epresenting the primary object, whilst randomly sampled pixels in

he complement of object proposals are adopted to train the GMM for
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Fig. 5. Five sequences used for setting parameters.
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the background. Given these GMM color models, per-pixel probabil-

ity Uc
i
(·) is defined as the likelihood observing each pixel as object or

background respectively can be computed. Fig. 4(d) shows per-pixel

object probabilities from GMM color model.

4.2. Objectness cue

Extracted object proposals provide explicit information of how

likely a region belongs to the primary object (objectness) which can

be directly used to drive the final segmentation. Per-pixel likelihood
o
i
(·) is set to be related to the objectness value (F in (7)) of the region

it belongs to:

o
i (xi) =

{
Fi if xi = 1
1 − Fi if xi = 0

(9)

5. Implementation details

We start by computing feature descriptors for all the regions in

video. We utilize the superpixel regions returned from [18] which is

produced by [64]. We select the top K = 10 highest-scoring regions

from each frame to form a candidate pool C.

Two types of bag-of-features histograms are used: Texton His-

tograms (TH) and Color Histograms (CH). For TH, a filter bank with 18

bar and edge filters (6 orientations and 3 scales for each), 1 Gaussian

and 1 Laplacian-of-Gaussian filters, is used. 400 textons are quantized

via k-means. For CH, we use CIE Lab color space with 20 bins per

channel (60 bins in total). All histograms are concatenated to form

a single feature vector for each region. We learn 5 components per

GMM to model the color distribution.

We empirically set μ = 3.0 to balance the impact of the prior la-

belling and the local labelling smoothness. For graph cut optimiza-

tion, we set λ = 5 and w = 0.35 by optimizing segmentation against

ground truth over a set of 5 videos from VOT2013 [65] and VBR [66]

shown in Fig. 5 which proved to be a versatile setting for a wide vari-

ety of videos. These parameters are fixed for the evaluation.

For efficiency and scalability, our region graph transduction learn-

ing is sequentially performed on clips of 20 frames by dividing the

source video. The efficient transduction learning normally takes ∼ 18

seconds on a clip of 20 frames with an unoptimized MATLAB imple-

mentation. The final graph cut based pixel labelling is sequentially

performed in each frame in turn, using a space-time graph of three

consecutive frames.

6. Experimental results

We evaluate our method on three datasets1: SegTrack [4], Sports

(a new dataset consisting of five videos), and YouTube-Objects [67].

Two videos (waterski, yunakim) of this new dataset are from GaT-

ech video segmentation dataset [30], two (jump, gymnastic) from the

challenging VOT2013 [65] dataset, and one (monkeybar) from video

tooning [25].
1 Results can be viewed online at: http://youtu.be/mrwl8l6t0HU.

(

f

o

The SegTrack dataset comes with pixel-level ground truth for the

ask of video object segmentation. We manually labelled the ground-

ruth segmentation of all the frames in the new dataset for evalu-

tion. We measure the segmentation performance on SegTrack and

ports as the average percentage of per-frame pixel error compared

o the ground-truth:

rror = XOR(S,GT)

NF · P
(10)

here S denotes the label for every pixel in the video, GT is the

round-truth, NF is the total number of frames in the video, and P

s the total number of pixels per frame. YouTube-Objects dataset pro-

ides ground-truth bounding boxes on the object of interest in one

rame for each of 1407 video shots. We adopt the performance mea-

ure used in [12,67], i.e. the bounding box intersection-over-union

atio. We automatically fit a bounding box to the largest connected

omponent in the segmentation output by our method for the pur-

ose of this evaluation.

.1. SegTrack dataset

There are totally six videos (birdfall, cheetah, girl, monekeydog,

arachute, penguin) in SegTrack dataset. We follow the setup in pre-

ious works [9–13] and discard the penguin video, since only a single

enguin is labelled in the ground-truth amidst a group of penguins.

hose videos exhibit a variety of challenges, including objects of sim-

lar color to the background, fast motion, non-rigid deformations, and

ast camera motion.

.1.1. Ablation studies

To understand the contribution of each proposed modules in our

lgorithm, we compare the segmentation results using the proposed

ethod against two baseline schemes (I) unary term using only color

ikelihood from GMM color models trained on object proposals and

II) unary term using only objectness value from Eq. (9). The quanti-

ative results on SegTrack dataset are listed in Table 1, where the col-

mn GMM refers to the results from scheme I and Objectness refers

o scheme II respectively. We observe that the segmentation results

riven by objectness value are only slightly inferior to the results us-

ng the full system, which demonstrates the efficacy of the generated

bject proposals. Although GMM based unary underperforms object-

ess based unary, its complementary effect on objectness-only unary

an be clearly observed by comparing the full-system and objectness-

nly results. More specifically, objectness gives more accurate yet oc-

asionally unsmooth predictions, as shown in Fig. 4 (i.e., the girl’s

air); GMM color model gives more coherent predictions to compen-

ate unsmooth objectness values whereas it suffers from similar col-

rs. This noise in GMM unary is properly tackled by the pairwise term

n graph cut optimization.

To evaluate our method’s capability to detect and generate spatio-

emporal coherent and dense object-like regions, we further compare

he generated proposals with [18], one of the state-of-the-art seg-

ent based object proposal methods on still images, as the baseline.

able 1 also compares the per-pixel error rate of our object proposals

column Proposals), per-frame best scoring object proposal generated

rom [18], and also the lowest/highest error rates of all existing meth-

ds on SegTrack dataset. We observe that [18] returns inconsistent

http://youtu.be/mrwl8l6t0HU
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Fig. 6. Primary object proposals in SegTrack dataset. Row 1: top-scoring object proposal by Endres and Hoiem [18] in each frame. Row 2: primary object proposal generated by the

proposed graph transduction learning method.

a

o

d

p

s

e

s

s

fi

t

[

nd sporadic object proposals independently in each frame, whilst

ur object proposal captures the coherent essence of primary object,

espite appearance variation and sporadity of detection. The com-

arison against the existing lowest/highest error rates of video object

egmentation methods shows that the object regions generated by

fficient graph transduction learning alone can be regarded as coarse
egmentation, even without the pixel-based object segmentation de-

cribed in Section 4. The qualitative comparison in Fig. 6 further con-

rms the advantages of the proposed method in SegTrack dataset.

We also compare the object proposals generated from our graph

ransduction learning with the ‘key-segments’ generated by Lee et al.

9]. Fig. 7 shows the per-frame ground-truth overlap score of those
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Fig. 7. Ground-truth overlap score of our object proposals and the ‘key-segments’ from Lee et al. [9].

Table 1

Ablation studies on SegTrack. Segmentation results using the proposed algorithm (column Full System), GMM

color model based unary term only (column GMM) and objectness value based unary only (column Objectness)

are compared. The proposed video object proposals are also compared with the per-frame top-scoring object

proposal from [18], and also the lowest/highest error rates of all existing video object segmentation methods.

Segmentation error as measured by the average percentage (%) of incorrect pixels per frame.

Video (no. of frames) Full system GMM Objectness Proposals [18] Lowest Highest

Birdfall (30) 0.17 0.42 0.21 0.30 26.17 0.17 0.55

Cheetah (29) 0.86 1.25 0.92 1.10 26.89 0.51 2.56

Girl (21) 0.85 1.55 1.07 1.28 6.39 0.85 5.93

Monkeydog (71) 0.44 1.52 0.58 1.08 37.84 0.37 1.87

Parachute (51) 0.14 0.68 0.35 0.30 56.91 0.13 1.09
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Table 2

Quantitative segmentation results on SegTrack. Segmentation error as measured by the average percentage

(%) of incorrect pixels per frame. Lower values are better.

Video Ours [24] [13] [12] [11] [10] [68] [9] [8] [4] [1]

Birdfall 0.17 0.29 0.22 0.26 0.18 0.22 0.55 0.34 0.55 0.30 0.54

Cheetah 0.86 0.51 1.28 1.16 0.82 1.05 1.53 1.18 2.56 1.49 1.58

Girl 0.85 1.51 1.23 3.01 1.16 1.33 4.44 1.39 5.93 1.02 1.37

Monkeydog 0.44 0.65 0.73 0.37 0.48 0.61 1.87 0.68 1.87 0.73 0.89

Parachute 0.14 0.13 0.23 0.59 0.15 0.15 1.09 0.14 0.76 0.16 0.34

Average 0.42 0.53 0.65 0.79 0.47 0.52 1.70 0.61 1.92 0.64 0.84

Supervision N Y N N N N N N N Y Y

Fig. 8. Segmentation results on SegTrack dataset. The contour of segmented primary object is shown in green. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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enerated object proposals from both methods on SegTrack dataset.

he results clearly demonstrate that our method can generate object

roposals which are not only temporally dense in each frame, but also

reak the lower-bound posed by the accuracy of the region candi-

ates produced by [18] by learning a holistic appearance model (note

hat most of the blue bars are taller than the corresponding red bars

n Fig. 7).

.1.2. Evaluation of video object segmentation

We compare our video object segmentation method with five

tate-of-the-art automatic methods [9–13], three semi-automatic

ethods [1,4,24] and two motion segmentation methods [8,68]. Our

ethod achieves the lowest average percentage of per-frame pixel er-

or along with superior performance on two out of five videos com-

ared with all 10 state-of-the-art video object segmentation methods

ith or without supervision and motion segmentation methods. It

roduces second best results on two out of the rest three videos. Note

hat our method consistently segments all the videos with low error
ate which reflects its robustness on various challenging situations.

s a contrast, previous ‘object proposal’ based methods are limited to

he existing region candidates which contain a large amount of label

oise.

.2. Sports dataset

We have manually generated ground-truth for a new dataset col-

ecting videos from other datasets for video object segmentation. The

ataset is challenging: those videos are generally longer than Seg-

rack dataset; person’s varying poses cause frequent self-occlusions

nd consequently appearance variations; some persons move fast so

ausing blur whilst some are slow which is very hard to perform mo-

ion segmentation. We find that the results on longer and complex

ideos can better demonstrate the strength of our approach, espe-

ially in dealing with fast appearance variation, cluttered scene and

omplex motions.
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Fig. 9. Segmentation results on gymnastic, jump and monkeybar from Sports dataset. Row 1: Segmentation results by Lee et al. [9]. Row 2: segmentation results by Zhang et al. [11].

Row 3: segmentation results by Papazoglou and Ferrari [12]. Row 4: segmentation by the proposed method.
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Fig. 10. Segmentation results on waterski and yunakim Sports dataset. Row 1: segmentation results by Lee et al. [9]. Row 2: segmentation results by Zhang et al. [11]. Row 3:

segmentation results by Papazoglou and Ferrari [12]. Row 4: segmentation by the proposed method.

Table 3

Quantitative results on Sports dataset. Segmentation error

as measured by the average percentage (%) of incorrect pix-

els per frame.

Video (no. of frames) Ours [9] [11] [12]

Gymnastic (100) 0.88 2.77 3.39 4.73

Jump (105) 0.15 0.55 1.5 0.44

Monkeybar (200) 1.65 3.03 4.27 2.65

Waterski (48) 0.98 1.38 2.02 2.79

Yunakim (200) 0.35 1.06 4.72 0.45
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We firstly compare the proposed approach with Lee et al. [9]

hich is one of the state-of-the-art ‘object proposal’ approach, both

uantitatively and qualitatively.2 Table 3 shows the segmentation er-

or on five videos of Sports dataset, comparing our method with [9].

ur method substantially outperforms [9] with low segmentation er-

or across all videos. The qualitative comparisons in Figs. 9 and 10

urther confirm the advantages of the proposed method over [9]. In

ymnastic (Fig. 9 first video), the appearance of the athlete varies

uickly due to the fast motion and pose variation. The sparse and

oisy ‘key-segments’ generated by [9] can no longer deal with this
2 We used the publicly available source code from: http://vision.cs.utexas.edu/

rojects/keysegments/code/. v
omplex situation. As a contrast, our approach robustly segments the

thlete based on rich descriptions of the primary object regardless

f the video length and appearance variation. Similar situations are

lso present in monkeybar (Fig. 9 third video), waterski (Fig. 10 first

ideo) and yunakim (Fig. 10 second video) where, in meanwhile, self-

cclusion aggravates the failure of [9], due to the lack of prior knowl-

dge in the corresponding frames. The result on jump (Fig. 9 second

ideo) demonstrates that our method can stably segment small ob-

ect while preserving temporal coherence (see the missegmentations

n the background from [9]).

We also quantitatively and qualitatively compare with Zhang et al.

11] on Sports dataset.3 The quantitative and qualitative comparisons

re shown in Table 3 and Fig. 9, respectively. Using local motion-

arped overlapping to form new object regions from the region can-

idates produced by [11,18] tends to produce either under- or over-

egmentations (e.g. the gymnastic, jump and yunakim sequences) due

o the spurious object regions and heavy reliance on accurate mo-

ion estimation. Zhang et al. [11] further assume all object-like re-

ions within each frame are independent and do not explicitly con-

ider spatial affinity, which substantially limits the size of the object

egion especially when the primary object is comprised of multiple
3 We used the publicly available source code from: http://dromston.com/projects/

ideo_object_segmentation.php.

http://vision.cs.utexas.edu/projects/keysegments/code/
http://dromston.com/projects/video_object_segmentation.php
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Fig. 11. Example results for 10 categories from YouTube-Objects dataset.
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o

regions with distinct appearances (e.g. the monkeybar sequence). Dis-

tinctively, our method learns a holistic appearance model to diffuse

the prior knowledge from the initial region candidates using graph

transduction learning and thus can cope with more complex scenes

in natural videos.

Our method also outperforms Papazoglou and Ferrari [12]4 which

is one of the state-of-the-art approaches utilizing ‘occlusion bound-

aries’. Heavily relying on motion estimations, Papazoglou and Fer-

rari [12] is sensitive to local erroneous optical flows caused by sim-

ilar colors (e.g. the monkeybar sequence) or strong motion blurs (e.g.
4 We used the publicly available source code from: http://calvin.inf.ed.ac.uk/

software/fast-video-segmentation.

g

s

i

he gymnastic sequence). In contrast, our method handles these sit-

ations better with a higher level notion of object, enabled by the

iverse set of dense video object proposals.

.3. YouTube-objects dataset

YouTube-Objects [67] is a large-scale dataset which consists of

26 completely unconstrained and very challenging videos from 10

bject classes. The videos feature large camera motion, diverse back-

rounds, illumination changes; the objects undergo rapid movement,

trong scale and viewpoint changes, non-rigid deformations.

We compare to [8,12,23,67], and report their performance as orig-

nally stated in [12,67]. As shown in Table 4, our method outperforms

http://calvin.inf.ed.ac.uk/software/fast-video-segmentation
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Table 4

Intersection-over-union overlap accuracies on YouTube-Objects Dataset.

Method Plane Bird Boat Car Cat Cow Dog Horse Mbike Train Avg

Ours 0.63 0.69 0.40 0.61 0.48 0.46 0.67 0.53 0.47 0.38 0.53

[8] 0.54 0.20 0.38 0.37 0.32 0.29 0.27 0.35 0.45 0.38 0.35

[67] 0.52 0.18 0.34 0.35 0.22 0.18 0.14 0.27 0.41 0.25 0.29

[12] 0.65 0.67 0.39 0.65 0.46 0.40 0.65 0.48 0.39 0.25 0.50
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he competing methods in 8 out of 10 classes, with gains up to 0.033

n average accuracy over the best competing method [12], which con-

rms what we observed on the SegTrack and Sports datasets. We also

ompare with the video object proposal method presented by Oneata

t al. [23] which reported the average accuracies using different num-

er of proposals. The accuracy reported is 0.461 using 10 proposals, a

esult which is considerably lower than our method (0.534).

. Discussions

Although the proposed approach can deliver superior perfor-

ance comparing with existing methods focusing on the primary

ideo object, the system as a whole cannot deal with multiple objects

imultaneously due to the non-discriminative nature of generic ob-

ect detection and large variation of video objects (with occlusions).

onsistently discovering, tracking and segmenting multiple generic

bjects in natural videos remains an open question if no prior knowl-

dge is present. Yet it can be relaxed into a category-specific object

etection and segmentation problem, given much stronger supervi-

ion and prior knowledge [69,70], i.e., the category-dependent object

etector and video level label are available.

While further discussion of multiple category-specific objects

roblem is beyond the scope of this paper, it is worth noting that

ur core contribution, i.e., graph transduction learning approach for

enerating object proposals (Section 3.1), is able to generalize to any

ideo object segmentation problem, given proper object detection

nd holistic modeling as in Section 3.2.

. Conclusion

We have proposed a novel automatic video object segmentation

ethod by generating a diverse set of video object proposals in a

ottom-up approach. This set of rich descriptions underpin robust

egmentations against the large variations of appearance, shape and

cclusion in natural videos. The generation of dense video object

roposals is cast as performing efficient graph transduction learn-

ng based on a holistic model to describe the ‘object-like’ regions, in-

orporating both spatial and temporal cues. The proposed approach

xhibits superior performance in comparison with the state of the

rt on the SegTrack dataset, YouTube-Objects dataset, and additional

hallenging dataset posing different challenges.
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