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ABSTRACT
In this paper, we present a robust and efficient approach for
segmenting images with less and intuitive user interaction,
particularly targeted for mobile touch screen devices. Our ap-
proach combines geodesic distance information with the flex-
ibility of level set methods in energy minimization, leverag-
ing the complementary strengths of each to promote accurate
boundary placement and strong region connectivity while re-
quiring less user interaction. To maximize the user-provided
prior knowledge, we further propose a weakly supervised
seed generation algorithm which enables image object seg-
mentation without user-provided background seeds. Our ap-
proach provides a practical solution for visual object cutout on
mobile touch screen devices, facilitating various media ma-
nipulation applications. We describe such a use case to selec-
tively create oil painting effects on images. We demonstrate
that our approach is less sensitive to seed placement and bet-
ter at edge localization, whilst requiring less user interaction,
compared with the state-of-the-art methods.
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1. INTRODUCTION

Interactive image segmentation is becoming growingly popu-
lar especially on mobile touch screen devices to facilitate spa-
tially localized media manipulation, since prior knowledge

about the desired object and background can be easily de-
fined with simple user interactions such as marking of object
boundaries [1, 2], placing a bounding box around the fore-
ground object [3, 4], and loosely drawing scribbles on fore-
ground/background regions [5, 6, 7]. Among these different
interaction modes, drawing scribbles is of the most interests
for touch screen devices since it provides sufficiently rich in-
formation about the desired foreground and background re-
gions while requiring less and flexible user interventions. De-
spite of the significant advances delivered in recent years,
two open issues prevent the scribble-based approach from
being used by massive mobile device end-users. First, to
draw scribbles on both the foreground and background ob-
jects is too troublesome for compact touch screens. The
need to switch between foreground and background scribbles
also complicates the UI. Second, it is cumbersome for novice
end users to perform substantial fine-tunings to correct mis-
segmentations, especially the noisy boundaries and disjoint
regions which may severely affect the quality of the target ap-
plications.

To tackle these two compelling issues, we propose in this
paper a novel interactive segmentation method that a) relieves
the burden of drawing scribbles on background regions; b) au-
tomatically promotes accurate boundary placements and fills
contiguous, coherent regions without substantial user correc-
tions. For the first goal, we formulate seed generation as a
weakly supervised segment annotation problem, initially gen-
erating background seeds from the given image border, prun-
ing mis-labelled background seeds depending on their super-
pixel geodesic distance from foreground seeds and generating
new background seeds via cascaded classification (see Sec.
3). For the second goal, we proposes a geodesic level set
framework that combines geodesic region information with
the flexibility of the level set methods in energy minimization.

1.1. Related Work

Geodesic distance has been used for interactive image seg-
mentation driven by scribbles [6], which selectively fill the
desired region by expanding from the interior of the se-
lected object outwards without explicitly considering the ob-
ject boundary. This make it advantageous for segmenting ob-
jects with complex topologies, whilst it may suffer from a
bias that favors shorter paths from the seeds. These methods
may also fail to accurately identify the real object boundaries
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due to the lack of an explicit optimization framework taking
into account of edge contrast, something at which level set or
graph cut based methods generally excel.

Despite the improvements reported by the approaches
combining geodesic distance information and graph cut [8, 9],
these approaches are limited by the inherent bias of graph cut
towards shorter paths, i.e. small segments as the optimiza-
tion sums over the boundaries of segmented regions. Anh et
al. [10] proposed a continuous-domain convex active contour
model combining geodesic distance based probability with
color distance based probability, which essentially relies on
the difference between geodesic distances from FG/BG seeds.
This difference generally accounts for the sensitivity to seeds
placement and disjointed regions in geodesic segmentation.

Level set methods [11] neatly enable the minimization of
energy functionals. Caselles et al. [12] proposed the edge-
based geodesic active contour model for image segmentation
as a geometric alternative for snakes, to obtain the optimal
image partition by finding the set of minimal length geodesic
curves that are attracted by the real region boundaries. More
robust approaches that encode region information were pro-
posed later by Paragios et al. [13]. Higher level prior knowl-
edge such as geometric shape priors have also been intro-
duced to level set framework [14, 15].

2. GEODESIC LEVEL SET

The general idea of level set methods is that a contour C in a
domain Ω can be represented by the zero level set of a higher
level embedding function φ: Ω → <. Evolving the contour
C is achieved by evolving the embedding function φ which
is defined as the signed distance function with φ > 0 inside
the contour, φ < 0 outside the contour and |∇φ| = 1 almost
everywhere.

The evolution of the level set function φ is governed by the
the Euler-Lagrange equation which minimizes E(φ) at ∂φ∂t =

−∂E(φ)
∂φ . These methods are known as variational level set

methods [11]. Thus the segmentation boundary C is derived
by obtaining the optimal φ at the zero level as C = {x ∈
Ω | φ(x) = 0}.

Following the level set paradigm, we propose a new en-
ergy functional to incorporate geodesic region information:

E(φ) = αEg(φ) + Ee(φ) (1)

where α is an importance coefficient, Eg(φ) is the proposed
geodesic region term andEe(φ), as defined in [16], is the edge
term which consists of two components. The first component
of edge term is the geodesic active contour component which
is minimized when the zero level contour of φ is located at
the object boundaries; it is essential for the contour evolution
to stop at the desired object boundary. The second compo-
nent is the ballooning component which speeds up the motion
of the zero level contour in the level set evolution process to
avoid short-cutting. We incorporate this ballooning compo-
nent mainly to address the short-cutting problem, for which
a local weighting strategy has been adopted within the graph
cut framework (e.g. see [9]). The reader is referred to [16] for
details of the definition of edge term Ee(φ). We introduce the
derivation of the proposed geodesic region term below.

In order to reduce the sensitivity to seeds placement, we
propose a novel geodesic region term Eg(φ) which measures
the statistics of the geodesic distance of all pixels instead of
the individual geodesic distance used in [6]. Following Para-
gios et al. [13], an optimal partition P̂(Ω) of the image plane
Ω can be computed by maximizing the a posterior probability
p(P(Ω)|I) for the given image I . Applying Bayes’ rule, it can
be expressed as p(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)). Under the
given prior p(P(Ω)), optimal two-region partition is achieved
by maximizing p(I|P(Ω)) = p(I|Ω+)p(I|Ω−), where Ω+ =
{x|φ(x) > 0} and Ω− = {x|φ(x) < 0} represent the re-
gions inside and outside the contour in question, and p(I|Ω+),
p(I|Ω−) are likelihoods of foreground/background regions
respectively. We derive Eg(φ) as

Eg(φ) = −[log p(I|Ω+) + log p(I|Ω−)]. (2)

The minimization of this energy function is equivalent to the
maximization of posterior probability of an optimal partition
P̂(Ω).

We assume that the image I in each region is charac-
terized by the individual relative geodesic distance Gl(x|θ)
(l ∈ {F ,B}) at different locations x and Gl(x|θ) values are
i.i.d. We reduce (2) to Eg(φ) = −

∫
Ω

(H(φ) logGF (x|θ) +
(1−H(φ)) logGB(x|θ)dx, where θ represents the foreground
and background color models, H is the Heaviside function,
and Gl(x|θ) = 1 − Dl(x)

DF (x)+DB(x) which represents the rela-
tive geodesic distance from current pixel x to label l based on
color models θ.

Let ΩF be the foreground seed and ΩB be the back-
ground seed. The geodesic distance from each of the two
sets of seeds for every pixel x is computed as Dl(x) =
mins∈Ωl

d(s, x), l ∈ {F ,B} where

dl(s1, s2) := minLs1,s2

∫ 1

0

|Wl(Ls1,s2(p)) · L̇s1,s2(p)|dp (3)

Ls1,s2(p) is a path parameterized by p = [0, 1] connecting
the pixels s1 to s2 respectively, and Wl(s) gives the geodesic
weight. We set Wl(s) as the gradient of the likelihood that a
pixel belongs to label l as in [6], i.e., Wl(s) = ∇Pl(C(s)),
where Pl(c) = Pr(c|l)

Pr(c|F)+Pr(c|B) , C(s) is the color at s and
Pr(c|l) the likelihood that a pixel with color c belongs to la-
bel l. The foreground and background color models are repre-
sented by Gaussian Mixture Model (GMM) learned from ob-
servations of foreground and background seeds respectively.

This proposed geodesic region term provides region-
based information which encodes both color distribution and
spatial information. The incorporation of geodesic informa-
tion is crucial to alleviate the tendency of either under- or
over-segmentation in feature distance based models, e.g. [13],
when the foreground and background appearance models are
indistinct. Embedding geodesic information into a Bayesian
inference framework, our proposed geodesic region term sig-
nificantly reduces the sensitivity to seeds placement and the
number of disjoint regions.

Finally, we use the standard gradient descent method to
minimize the energy functional (1) as ∂φ

∂t = −∂Eg(φ)
∂φ −

∂Ee(φ)
∂φ , where the gradient flow of proposed geodesic region
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term is deducted as follows:

∂Eg(φ)

∂φ
= δ(φ) log

GB(x)

GF (x)

where δ is the Dirac delta function.
To substantially reduce the computational cost of level set

method, we adopt the narrow band method [17] to confine
the computation to a narrow band around the zero level set
contour. In our implementation, the embedding function φ is
initialized by extracting the contour of the user-provided fore-
ground brush stroke. The embedding function is assigned as 2
inside the contour and−2 outside the contour. We empirically
choose the parameter in the formulation to be α = 2.0, by op-
timizing performance against ground truth over a training set
of 50 images. Despite the availability of adaptive weighting
methods [9], our setting proved to be versatile for a wide va-
riety of images without increasing computational complexity.

3. SEED GENERATION VIA WEAKLY SUPERVISED
LEARNING

Scribble-based segmentation approaches enable intuitive user
interfaces for many image editing applications on desktop
PCs e.g. [6, 2]. For compact touch screens of mobile de-
vices, it is important to allow end-users to specify their object
of interests by simple finger gestures e.g. tapping or sweep-
ing. Existing scribble-based segmentation methods, which re-
quest user-specified seeds for both the foreground and back-
ground regions, are too troublesome for this purpose — not
only switching between foreground and background scribbles
complicates the UI, but also the sensible choice of the loca-
tion and amount of background scribbles to draw also troubles
mobile device end-users. Therefore, we propose a weakly
supervised learning driven seed generation algorithm to au-
tomatically generate background seeds from user-provided
foreground seeds. An example of the seed generation process
is shown in Fig. 1.

We start by over-segmenting the image into small coher-
ent regions i.e. superpixels, using the fast graph-based seg-
mentation method in which each segment is characterized by
a CIE Lab color histogram [18] (Fig. 1 (a)). The hand-
drawn scribbles are associated with those segments that in-
tersect with scribbles. This set of user-selected foreground
segments form the initial set of foreground seeds ΩF . The
set of initial background seeds ΩB consists of the segments
along the border of image plane (Fig. 1 (c)). Note that the
set of initial background seeds are chosen based on the as-
sumption that foreground objects rarely intersect with image
border. Even though this assumption may be violated under
certain circumstances (note the area marked by the ellipse in
Fig. 1 (c)), a further label pruning step is adopted to eliminate
mis-labelled segments (Fig. 1 (d)). More background seeds
(areas marked by the ellipses in Fig. 1 (e))) are generated
by performing classification in a cascaded setting to classify
the rest unlabelled segments. Details of seed generation are
elaborated below.

The seed generation is formulated as a weakly supervised
segment annotation problem. The initial foreground seeds ΩF

(a) (b) (c)

(d) (e) (f)

Fig. 1. Seed generation. (a) superpixel map (b) user-provided
FG scribbles applies on underlying segments (c) initial FG
(red) and BG (green) seeds (d) FG (red) and BG (green) seeds
after label noise pruning in Sec. 3.1 (d) seeds after seed gen-
eration in Sec. 3.2. (e) segmentation using generated seeds
in (d). pruning of label noise and generated BG seeds are
highlighted in ellipses.

form the set (denoted as P) of all instances with a positive la-
bel whilst the initial background seeds ΩB form the set of
all negative instances denoted as N . This initial set of seeds
provides a pool of weakly labeled data {< s1, l1 >, . . . , <
sN , lN >}, where si is segment i, and li ∈ {−1, 1} is the
label for segment i, with the label being positive if the seg-
ment si ∈ ΩF , and negative if si ∈ ΩB. Since our positive
data was weakly labeled by user input, we can assume that
the segments labeled as positive are (with rare exceptions)
correctly labeled whilst the negative instances N may con-
tain label noise. Our task then is to trim and generate negative
segments. We propose a two-phase algorithm to i) prune the
false negative instances Nfn in N and ii) perform cascaded
classification to propagate the negative instances.

3.1. Label Noise Pruning

We formulate the label noise pruning as a problem of rank-
ing the elements of N in decreasing order of a score, S(si)
such that top-ranked elements correspond to Ntn; threshold-
ing at a particular rank prunes Nfn. Appearance based dis-
tance measure alone is typically not discriminative when the
foreground and background are not visually distinct or the ap-
pearance of the background segments are diverse. It is natu-
ral to encode spatial information into the appearance distance
measure, where geodesic distance could again be adopted.

Distinctively, we propose to compute the weighted dis-
tance functions (geodesics) at the superpixel level which
could take the advantage of segment-based measure instead
of using the noisy pixel-based measure or the inaccurate color
models learned from the available seeds with label noise. We
set the geodesic weight W (s1, s2) in (3) to be the gradient
of segment features. Specifically, we compute the χ2 dis-
tance between the features of each pair of consecutive seg-
ments along the path, i.e. CIE Lab color histograms hs1
and hs2 , to approximate W (s1, s2). We define W (s1, s2) =
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1
2

∑K
k=1

[hs1 (k)−hs2 (k)]2

hs1
(k)+hs2

(k) , where K is the total number of bins
present in the descriptor (=20 for each CIE Lab channel).
Ls1,s2 in (3) is defined as the Euclidean distance between the
geometrical centers of consecutive segments. Applying these
new definitions in (3), we can compute the segment geodesic
distance from each instance inN to P . Intuitively, true nega-
tive segments are identified as those among N whose nearest
neighbor among P is as far as possible. To this end we rank
all elements in N in descending order of their distances from
P and keep the top-ranked (e.g. 60% percentile) segments
as true negatives while pruning the rest false negatives. Note
that this segment geodesic distance is the key to the success
of the weakly supervised segment annotation.

3.2. Seed Generation

To propagate the negative instances, we propose a cascade
classification process which can be structured into two stages:
(i) supervised discriminative learning to generate a candi-
date pool of negative instances based on appearance similarity
(ii) geodesic distance based selection to enforce spatial con-
straint.

Given the labeled instances in P and N , we adopt linear
SVM to learn a discriminative classifier to approach segment
annotation, propagating true negative instance labels to unla-
beled segments. Specifically, we train a linear SVM on the
CIE Lab color histograms of labeled segments, which is then
applied on the unlabelled segments. Those segments that are
classified negative form a candidate pool C of negative in-
stances.

Since Phase I results in a reliable set of N through la-
bel noise pruning, the superpixel geodesic distance measure
can also be computed from N to every superpixel candidate
ri ∈ C. Let DN (ri) and DP(ri) be the superpixel geodesic
distances from N and P to candidate superpixel ri respec-
tively. The relative geodesic distance GP(ri) from P to ri
can be computed as GP(ri) = DP(ri)

DN (ri)+DP(ri)
. Superpix-

els ri ∈ C which satisfy GP(ri) > 0.5 are added to N as
negative instances, i.e. new background seeds. By doing so,
the number of background seeds is effectively increased yet
without bringing in noisy seeds near foreground instances.

4. EXPERIMENTS AND COMPARISONS

In this section, we evaluate the accuracy of the geodesic level
set framework and the effectiveness of the proposed seed gen-
eration algorithm, in comparison with six state of the art
scribble-based segmentation methods, namely, the geodesic
active regions (LS) [13], geodesic segmentation (GD) [6], reg-
ular graph cut (GC) [5], geodesic graph cut (GDGC) [9],
star-convexity prior graph cut (SSGC) [7], and its variant us-
ing geodesic information (GSGC) [8] 1. Two schemes of the
proposed geodesic level set framework are compared in ex-
periments, i.e. the geodesic level set approach without us-
ing the seed generation algorithm (GDLS) and the one aug-
mented with seed generation (GDLS-SG). Segmentation ac-

1We used the publicly available source code from: ttp://www.
robots.ox.ac.uk/˜vgg/researc/iseg/

curacy of all methods are compared both quantitatively and
qualitatively, and results are elaborated in following subsec-
tions.

We have compared all segmentation methods on a dataset
consisting of both the GrabCut dataset (49 images) [3] and 74
images from the BerkeleyBSDS500 dataset [19]. The Grab-
Cut dataset comes with ground truth for the task of interactive
segmentation. We manually labelled the ground truth of the
rest of the images for evaluation. For a fair comparison of
performances, segmentations of different methods are driven
by the same set of user-provided scribbles except that back-
ground seeds are provided by the proposed seed generation
algorithm for our GDLS-SG method.

4.1. Quantitative Evaluation

We adopt the segmentation overlap score (SOS) used in the
VOC segmentation challenge [20] to quantify segmentation
accuracy against a manual specified ground-truth: SOS =
y∩ygt
y∪ygt

, where y denotes the set of segmented foreground pixels
and ygt the ground truth foreground pixels. For each method,
SOS is measured for each test image and statistics of SOS
for all test images is used to indicate the accuracy of each
method.

Table 4 summarizes the results of this quantitative com-
parison, which shows that the proposed GDLS achieves the
highest average segmentation overlap score (91.10%) and
outperforms all other state-of-the-art methods by varying
margins between 1% and 8%. It is worth noting that, the
proposed approach GDLS delivers a performance gain of
2.7% over LS and 7.9% over GD respectively. Noticeably,
the GDLS method also yields the tightest standard deviation
(0.0674) across the whole test dataset. The low standard devi-
ation confirms the superior robustness of the proposed GDLS
method across various natural images in the dataset, which is
in accordance with theoretic analysis of the adopted energy
terms defined in Section 2.

The geodesic level set method enhanced by the proposed
seed generation algorithm (GDLS-SG) is able to yield com-
parable performance (90.90%) of GDLS with minor degrada-
tion less than 1%. Even though no user-provided scribbles are
used for GDLS-SG, it still outperforms other state-of-the-art
methods e.g. the geodesic active regions framework (88.36%)
and the geodesic segmentation (83.18%). Since the GDLS-
SG method significantly reduces user interaction efforts for
compact touch screen devices, it is actually an appealing and
preferred solution in practice.

All graph cut variants enhanced by spatial or shape
constraint outperform the regular graph cut method which
reaches a low average overlap score 84.80%. By taking ad-
vantage of its robust foreground and background prior, GSGC
(90.26%) outperforms SSGC (89.97%) and GDGC (89.66%).
Table 4 also illustrates a noticeable trend that the last three
methods (GDGC, SSGC, GSGC) yield more robust segmen-
tation as indicated by the tighter standard deviation compared
to regular graph cut.
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GDLS GDLS-SG LS GD GC GDGC SSGC GSGC
Average (%) 91.10 90.90 88.36 83.18 84.80 89.66 89.97 90.26
Median (%) 92.56 92.45 90.54 87.12 86.53 91.44 92.09 92.27

Std 0.0674 0.0689 0.0859 0.1274 0.1137 0.0756 0.0704 0.0691

Table 1. Statistics of segmentation overlap scores from our objective comparison on the dataset

Fig. 2. Comparison of proposed geodesic level set framework with seed generation (rows 1) with LS (row 2) [13], GD (row 3)
[6], GDGC (row 4) [9], and GSGC (row 5) [8].

4.2. Qualitative Evaluation and Use Case

We perform qualitative comparison through visual inspection
for all test images and some typical results are summarized
in Fig. 2. Specifically, we selectively compare the proposed
GDLS-SG with LS, as well as methods incorporating geodesic
information, i.e. GD, GDGC, and GSGC in Fig. 2 to demon-
strate the benefit of combining geodesic region information
and level set. The proposed GDLS-SG method demonstrates
superior segmentation accuracy in challenging scenarios, e.g.
when the foreground and background exhibit similar colors
(columns 2, 5 and 7), the background is very cluttered or com-
plex (columns 3 and 4), or the foreground objects have com-
plex topology (column 1). These segmentation results exhibit
accurate boundary placement and strong region connectivity.

As a representative level set based method which com-
bines both the geodesic active contour model and region in-
formation, LS exhibits diversified performance (row 2 in Fig.
2). On the one hand, it fills the desired region with less dis-
joint regions by expanding from the interior of the selected
object outwards and respecting the object boundary. On the
other hand, it tends to either under-segment or over-segment
objects when the foreground and background color models
are indistinct (see columns 1, 4 and 5 for mis-segmentation

examples). More mis-segmentations can be observed in re-
sults from GD (row 3), due to the lack of explicit or implicit
edge information and the sensitivity to seeds placement of the
method. In case of complex scenes, geodesic segmentation
fails to distinguish the foreground from background given
limited user-provided seeds (e.g. column 2). By exploiting
the geodesic distance information, GDGC (row 4) effectively
avoids some short cutting problems and results in less dis-
joint regions. Nevertheless, it tends to degenerate into regular
graph cut when the foreground and background objects have
similar color (see e.g. the mis-segmented wolf in columns 2
and 7), due to the dependency of the adaptive weighting on the
classification performance of the color models. GSGC (row
5) extends star-convexity prior introduced in SSGC by replac-
ing the straight lines (Euclidean rays) with geodesic paths.
However, this strong connectivity constraint tends to be sen-
sitive to underlying color models learned from seeds exam-
ples. Consequently, under-segmentation are often observed
for regions with similar color distribution in the close vicin-
ity of foreground (columns 2 and 4), as it tends to push the
contour outwards along the geodesic paths. The shortcom-
ings discussed above are addressed, to various extents, in the
proposed geodesic level set framework.

As an application of our proposed algorithm on mobile
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Fig. 3. Segmentation (L) and background SBR effects (R).

devices, we apply an automatic stroke-based painterly render-
ing (SBR) algorithm by Shugrina et al. [21] to create virtual
brush strokes for oil painting and photo composition as shown
in Fig. 3, where the background scene is stylized as oil paint-
ing effects. The whole process only takes a couple of user
scribbles as shown in Fig. 2 to indicate the object of interest.
As to the computational complexity, the running time of the
proposed segmentation method on a commodity PC is ∼ 0.5
seconds per VGA image (640 × 480).

5. CONCLUSION

This paper has presented a robust and efficient image seg-
mentation method, in which both geodesic region information
and geodesic active contour model are combined in a level
set framework. Substantial performance gain from the pro-
posed approach has been achieved over the individual level set
method without geodesic information or geodesic segmenta-
tion methods. Under this framework, we have also proposed a
novel weakly supervised seed generation algorithm which re-
lieves the burden of providing background scribbles which is
crucial to reduce interaction efforts on compact touch screen
devices.
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